Low Level Image Processing Techniques
Using the Pipeline Image Processing Engine
in the Flight Telerobotic Servicer

Marilyn Nashman and Karen J. Chaconas
National Bureau of Standards, Gaithersburg, MD 20899

Abstract

This document describes the sensory processing system for the NASA/NBS Standard Refer-
ence Model (NASREM) for telerobotic control. This control system architecture has been
adopted by NASA for the Flight Telerobotic Servicer. The control system is hierarchically
designed and consists of three parallel systems: Task Decomposition, World Modeling and
Sensory Processing. The paper will concentrate on the Sensory Processing System, and in
particular will describe the image processing hardware and software used to extract features
at low levels of sensory processing for tasks representative of those envisioned for the
Space Station such as assembly and maintainence.

1. Introduction

The NASA/NBS Standard Reference Model (NASREM) architecture for the control sys-
tem of the Flight Telerobotic Servicer defines an architecture for telerobotics based on con-
cepts developed in other research programs. It incorporates artificial intelligence theories
such as goal decomposition, hierarchical planning, model driven image analysis, blackboard
systerns and expert systems [1]. The multiple processes of the system are hierarchically
structured. Each process is considered to be arranged vertically in a hierarchy which decom-
poses complex tasks into progressively simpler objectives. In addition to the vertical struc-
ture, the system is also partiioned horizontally into three sections: Task Decomposition,
World Modeling, and Sensory Processing (Figure 1).

The Task Decomposition System is responsible for monitoring tasks, planning, and con-
trol servoing of the robot’s manipulators, grippers, and sensors. The complexity of each func-
tion is determined by its position in the hierarchy [4, 11]. The World Model is responsible
for maintaining the best estimate of the current state of the system and of the world at any
given point in time. It is responsible for maintaining models of objects and structures, maps
of areas and volumes, lists of objects describing features and atmibutes, and tables of state

variables describing the system and the environment. The Sensory Processing System is
responsible for gathering sensory information from multiple instances of various sensors [8],
enhancing that information [9], recognizing features, objects, and relationships between
objects, and determining the correlation between observations and expectations.

Section 2 of this paper details the lower layers of the Sensory Processing System hierar-
chy. In Section 3, a parallel hardware system that is particularly well-suited for performing
low level processing tasks is described. Section 4 explains a number of techniques employing
local operations that are used to enhance data and extract features and that have been imple-
mented on parallel hardware.

2. Sensory Processing in the NASREM Architecture

The Sensory Processing System (SPS) in the NASREM architecture {1] is designed so
that data flows bidirectionally between the levels of the Sensory System and bidirectionally
between the Sensory System and the World Model (Figure 1). The SPS is designed to oper-
ate in both a bottom-up (data driven) and a top-down (model driven) mode. The World
Model contains both g priori information and updated information required to perform sensory
processing tasks. At each level of the Sensory Processing hierarchy, information will be sent
to the World Model. This information will be made available to the Task Decomposition
module at the level in which it is needed.

The system is divided into four levels: Data Acquisition, Low Level Processing, Interme-
diate Level Processing and High Level Processing. This organization parallels that
described in [2]. The Data Acquisition Level serves as an interface between the environ-
ment and the Sensory Processing System. It gathers raw information (readings) from each
of the sensors. Depending on the complexity of the data, this information may be stored
directly into the Servo Level of the World Model or used for further processing at the next
level (8]. The Low Level Processor performs point-by-point operations to enhance the raw
data and to perform local feature extraction. Its output is passed to the World Model at the
Prim Level and/or to the Intermediate Level Processor. The Intermediate Level Processor is
responsible for providing symbolic descriptions of regions, lines and surfaces that have been
extracted from Low Level Processing. This data is passed both to the World Model and to
the next SPS level. Lastly, the High Level Processor is responsible for interpreting and
labeling the "intermediate symbolic representation™ [2] and for updating the contents of the
World Model with the most current knowledge about the position and orientation of objects.

3. The Parallel Image Processing Engine

The information processed by the Low Level Processor is in the form of arrays of data
received from cameras, ranging sensors, or tactile array processors [9]. A typical image can
consist of between 16K (128 x 128) bytes and IM (1024 x 1024) bytes of information.
Because of the large amount of data to be processed and the need to process that data as
quickly as possible, most serial computers cannot meet the requirements of low level pro-
cessing. Parallel computers have been developed in recent years to specifically fulfill the
need of real-time processing of image data {6, 7], and although the machines differ in archi-
tectural design and implementation, they share the capability of being able to process an

SENSORY PROCESSING WORLD MODEL TASK DECOMPOSITION

g;g&iﬁ:;l »| Task Level - Task Level
[y f | [
Y] L J
Intermediate
Level Processing |- ™1 E-Move Level ["1 E-Move Level
A A &
\4
Low Lgvel
Processing _ "1 Prim Level "1 Prim Level
[} 4 [
\J \ \
~ Servo Level

Data Acquisition || Servo Level

Figure 1. NASREM Hierarchy

entire image or region of an image in real-time. Parallel processing is especially applicable
to low level image processing. The data structure used at this level is the image itself, a
spatially indexed image of points which correspond to gray scale intensity values. All parts
of the image are treated in the same way, and in general, no effort is made to distinguish
between different parts of it. Local operations depend only on corresponding elements
between images or on combinations of adjacent elements of an image (Figure 2). Computa-
tions tend to be simple arithmetic, algebraic, or logical operations, and typically a low number
of computations per pixel is required [5]. Parallel processors are also suited to multi-resolu-
tion representations and processing techniques.

a|jbjc
X — X5 d|xy| ¢l—a)
gl h
Point by Point Operation Neighborhood Operation
X = flxy) x5 =f(a,bcdefghx;)

Figure 2, Local Operations

Many local data enhancement techniques can be implemented on the Pipelined Image
Processing Engine (PIPE) developed at the National Bureau of Standards and manufactured
by Aspex, Inc. Some features of PIPE are discussed here, but the reader is referred to [6, 7]
for a more detailed description of the system. PIPE acquires its images in real-time from
analog sources such as cameras, video tapes, and ranging devices, as well as digital data
sources. Its output can be directed to video monitors, symbolic mapping devices, and higher
level processing systems. All inputs and outputs are synchronous with the video rate of six-
ty fields per second.

The PIPE system is composed of up to eight identical modular processing stages, each of
which contains two image buffers, look-up tables, three arithmetic logic units, and two neigh-

borhood operators (Figure 3).

nnnnn

F|R |B KEY:

ALU LUT = Look-Up Table
‘ F =Forward LUT
ALY R = Recursive LUT

B =Backwards LUT

ALU = Arithmetic Logic Unit

BUFA| BUFB BUFA = Image Buffer A
BUFB = Image Buffer B

BUFA| BUFB NOP = Neighborhood Operator

OT TVF = Two Valued Function LUT
L w0 = Video Buses
NOP NOP 1zx F Image Paths
I TVF I \ALU /

Figure 3. PIPE Modular Processing Stage

A forward path from one stage to the next allows pipelined and sequential processing. A
recursive path from a stage output back to its input allows feedback and relaxation process-
ing. A backward path from one stage to the previous stage allows for temporal operations
(Figure 4) .- The images in the three paths can be combined in arbitarary ways on each cycle
of a PIPE program, and the chosen configuration can change on different cycles.

Stage n Stage n+1
I: __| L _.l Recursive Path

Backward Path

C

Figure 4. Data Flow Path Between PIPE Stages

In addition, six video buses allow images to be sent from any stage to any one or more
stages.

Images can be processed in any combination of four ways on PIPE: point processing, spa-
tial neighborhood processing, sequence processing or Boolean processing (Figure 5). Differ-
ent processing can occur at individual pixels in the image by using a region-of-interest opera-

tor. All methods can be considered local operations.

A) B) &)

> fH—

O

Figure 5. Processing on PIPE: (A) Point (B) Spatial (C) Boolean (D) Sequential

Point processing can be a function of either one or two input images and includes simple
arithmetic and logical operations such as scaling, thresholding, converting number systems,
etc. Look-up tables resident on each PIPE stage allow the user to perform more complex
arithmetic operations, trigonometric operations, comparisons, rotations, €tc.

PIPE can perform up to two 3 x 3 neighborhood convolutions on each stage in parallel.
Both neighborhood operators operate on the same image input, but can perform different
neighborhood operations. Larger neighborhood convolutions can be achieved by decompos-
ing an odd-sized neighborhood mask into a sequence of 3 x 3 convolutons. The neighbor-
hood operators can be either arithmetic or Boolean and are performed identically on all loca-
tions in the image unless a region-of-interest is specified. Special features are provided to
prevent inaccurate computations on the image borders.

Multi-resolution pyramids can be constructed by selecting the “"squeeze"” or "expand”
options as an image is stored or written from a buffer. In the former case, each 2 x 2 neigh-
borhood of the input image is sampled and written to the output image resulting in an image
half the resolution of the original. This process can be repeated to generate successively
smaller resolution -images. Expanding an image involves the opposite operation by pixel
replication and generates successively larger resolution images.

Sequential processing works on a set of multiple images, e.g. sequences of images over
time, a stereo pair of right and left images, or multi-resolution images. By taking advantage
of the inter-stage paths, images can be combined, compared, sampled or differenced to
extract the desired application dependent information.

When performing Boolean processing, each pixel of information is considered to be com-
posed of eight independent bit planes which are operated upon simultaneously. The neigh-
borhood operators can be applied in a Boolean mode, where the output is the combination of

the 3 x 3 neighborhood using local operations on each of the eight bit planes.

PIPE programs are written on a host computer using a software package which is an icon-
ic representation of the hardware to generate microcode. The microcode instructions are
downloaded to PIPE, where they are resident during program execution. A software devel-
opment tool, ASPIPE, allows the user to code the spatial and temporal flow of the data
through the hardware and to allocate the look-up tables and PIPE resources to be used. Pro-
grams can be edited, saved, compiled, executed, and debugged in this environment. In addi-
tion, ASPIPE generates a sequencer file that specifies which micro-operation is executing at
each time-cycle. This sequencer also controls branching and looping among microcode
instructions during execution. '

A hardware interface between PIPE and a high level processor (HLP) has been devel-
oped and software has been written to support this interface. In this manner, the results of
Jow level vision tasks are transferred to a serial computer which can perform high level vision
tasks of image analysis, recognition, and general decision making which require global infor-
mation. Since the interface is bidirectional, the HLP can download images or look-up tables
directly to any buffer or table on any selected piece of PIPE hardware. In addition, the HLP
can select PIPE algorithms by manipulating the PIPE sequencer.

4. Low Level Image Processing Afgorithms

Figure 6 is a picture of a truss node suggested for use in assembly of the NASA Space
Station. The sockets are attached to the node in various configurations, but the world model
has knowledge of the geometry of each instance of any assembly. The appearance of the
truss node presents a difficult problem for computer vision: the part is machined of a smooth,
highly reflective metal, and the curvature of the node increases the difficulty of obtaining sat-
isfactory information with standard image processing techniques.

Figure 6. Truss Node Assembly

Binary thresholding of the image fails because of the specularity of the node. Connected com-
ponent algorithms which segment an image into distinct objects and compute statistical infor-
mation relative to each object fail because the node is improperly segmented due to highlight
and shadow effects. [Edge extraction routines provide extraneous information because high-
lights are falsely interpreted as edges. Figure 7 illustrates the “"edges™ found in the truss
node assembly using a non-maxima suppression algorithm. .

Figure 7. Truss Node Edge Image

To overcome these obstacles, an algorithm was developed on PIPE which makes use of
standard edge extraction techniques, image smoothing, and multi-resolution processing. The
goal of this algorithm is to provide a connected edge image of the truss node assembly which
can be used as input to a connected component algorithm.

The first operation applied in this algorithm involves extracting edges in the full resolution
image. A Sobel operator [10] is applied to the image using PIPE’s neighborhood operator to

extract the x an_d_Lgradicnts at each pixel in the image (Figure 8).

X Gradient Operator
-1 0 1
-2 0 2
-1 0 1

Y Gradient Operator
1 2 1
0 0 0
-1 -2 -1

Figure 8. Sobel! Operator

The magnitude and direction of each edge point are then computed using two-valued function
look-up tables. By thresholding the direction image with the magnitude image to remove
weak edges, a three pixel wide, binary edge is obtained . In order to thin the edge image, a
non-maxima suppression algorithm is applied. This operation involves quantizing the direc-
tions of all edge points into one of eight values (Figure 9). The output of this quantization

Value Direction Range
2 1 0 0->45
1 45->90
2 90 -> 135
3 135-> 180
4 7 4 180 -> 225
516 5 225 ->270
6 270 -> 315
7 315->360

Figure 9. Quantization of Direction Image

is stored in a buffer which is used to determine in which direction to thin the corresponding
pixel in the edge image. In this manner, different 3 x 3 masks can be applied to the image
depending on the direction of the edge, and all edge points that are not maximum in the gradi-
ent direction are eliminated (Figure 7). '

In order to remove the extraneous information in the thinned edge image, mult-resolution
processing is used. The image is first smoothed using a Gaussian operator [10], and then it
is sampled such that each 2 x 2 neighborhood of the original image is averaged to produce
one pixel at the next higher level of resolution (Figure 10). The reverse operation is then
applied to the smoothed sampled image; it is expanded back to a 256 x 256 image using pixel
replication.

Level n Level n+1

Figure 10. Forming Levels of a Multi-Resolution Pyramid
The result of these operations is shown in Figure 11. The false edges caused by the specu-

larity have been removed and all portions of the truss assembly are connected. Reapplying
the Sobel operator to Figure 11 results in a connected edge image (Figure 12), and applying
a shrinking algorithm results in a connected, thinned edge image (Figure 13).

Figure 12. Sobe! Edge Image

Figure 13. Thinned Edge Image

Using the hardware interface between PIPE and the HLP, the thinned edge image is
transferred to the HLP for additional processing to obtain global information. In particular,
the area of the node, its centroid, and its orientation are computed using the (p+q)th order
moments defined in [12):

M= JIxP y9£(x,y) dx dy

where f(x,y) = 1 for all edge points and f(x,y) = 0 for all non-edge points. The centroid of an
object is defined as :

X =myo/mpg . Yo =mg; /mpg
where mgy is the area of the object, and the orientation is defined as :

0=.51an " [2 (mpymy - mygmy)/ ((mgg mag - my%) - (mog Mgy - gy M),

The locations of corners of an object provide useful information in that they support the
calculation of the orientation of an object. Given the model of an object, the viewing position
can be determined by knowing which corners are visible.

Corners can be defined as locations where adjacent edge segments have high rates of
curvature. These rates of curvature can be measured over small distances, yielding local cor-
ners. As the distance becomes larger, more global comers are found. To detect global cor-
ners, it is useful to use a lower resolution image, since a largc arca in the high resolution
image maps to a relatively smaller area in the low resolution image (see Figure 10). A cor-
ner detection algorithm was implemented on the PIPE using these concepts.

Inidally, an image of the truss node (see Figure 6) was used to generate successively lower
resolution versions of the same image. The image was sampled so that only every other pix-
el on every other row was used to produce an image at the next resolution. From a 256 x
256 image, images were created of sizes 128 x 128, 64 x 64, 32 x 32, and 16 x 16. Using the
Jow resolution image, a Sobel edge operator was applied to compute edge magnitude. Figure
14 is a picture of the edge image at this Jow resolution thresholded to indicate where edges
resulted from high changes in contrast. Next, four Boolean neighborhood operations were
computed on this binary edge image to test for the presence of eight types of comers (see
Figure 15). The responses from the comer masks were combined and then expanded back to
full resolution using pixel replication. The results are shown superimposed on the grey scale
image of the truss node, where the corners were detected on the 16 x 16 level (see Figure
16) and on the 32 x 32 level (see Figure 17). As is expected, there are more responses
obtained at the 32 x 32 level of resolution than at the 16 x 16 level. This is caused by the fact
that the local operators are applied over a smaller distance, thereby detecting more Jocal cor-
ners.

The quality and accuracy of the comners detected depend largely on the level of resolution
at which they were extracted. The margin of error of the comer position is produced as a
result of the way in which images are reduced and expanded on the PIPE. As an image
buffer is reduced in resolution, pixels are sampled in every other row and in every other col-
umn. The result is always placed in the same corner of a 2 x 2 neighborhood. Expansion of
an image involves the replication of pixels in a 2 x 2 neighborhood. Thus a comer point in the
16 x 16 image represents 16 pixels in the 256 x 256 image, any one of which can be a true
corner point.

Figure 14. Low Resolution Image of Truss Node

Upper Left Upper Right Lower Right Lower Left
x| x |0 0 x X 0 0 0 0 010
x p 4 0 0 x x 0 b 4 p 4 x x 0
0]01}10 0 0 0 0 x x x x{ 0
0] x ? ? x 0 ? ? ? ? ?
X x ? ? x x ? x| x x X
21 ? ? ? ? ? ? x| O 0 x

0 = no edge

x = edge

? = don’t care

Figure 15. Comer Detection Masks

Figure 16. Corners Detected on 16 x 16 Level

Figure 17. Comers Detected on 32 x 32 Level

8. Conclusion

A Flight Telerobotic Servicer will be used to assist the astronaut in the construction and
maintainance of the NASA Space Station. NASREM, the hierarchical control system devel-
oped at the National Bureau of Standards (NBS), has been chosen by NASA as the comput-
ing architecture for this project. The sensory processing portion of this control scheme
involves, at the Jow level, the preprocessing and enhancement of large arrays of data that
have been gathered from external sensors. Feature extraction from these arrays is often
more accurate if the data is preprocessed to remove the effects of noise and variable environ-
mental conditions such as lighting.

Using a truss node, a stucture which will be used in the Space Station, the PIPE was
able to produce meaningful information which will be used by other processes in the control
scheme. By using a combination of edge extraction techniques, image smoothing, and multi-
resolution processing, image processing problems presented by the specularity of the truss
node were overcome. A PIPE program is able to produce a thinned, connected edge image
approximately every 1/10th of a second. A second PIPE program has been used to extract
corners or areas of high curvature at update rates of 1/4th of a second. These results enable
higher sensory levels to compute the position and orientation of the node in space.

More effort is required to bind comers detected at low levels of resolution with their true
position in the full resolution image. This corner localization can be accomplished by adjust-
ing the comer positions on each level of resolution during expansion instead of only at the
lowest level. In addition, both algorithms can be enhanced by the removal of spurious edge
points in the image.

Acknowledgement

The authors wish to thank Tsai-Hong Hong for her helpful suggestions and evaluations
of algorithms implemented on the PIPE.

References

[1] Albus, J.S., McCain, HG.,, Lumia, R.,, "NASA/NBS Standard Reference Model
Telerobot Control System Architecture (NASREM)", NASA Document SS-GSFC-
0027, December 4, 1986.

[2] Arkin, R.C,, Riseman, EM,, Hanson, A.R., "AuRA: An Architecture for Vision-Based
Robot Navigation”, Proceedings: Image Understanding Workshop, February, 1987.

[3] Aspex, Inc., "PIPE—-An Introduction to the PIPE System”, 1987.

[4] Fiala, J. , "Manipulator Servo Level Task Decomposition”, Doc. ICG #002, NBS Inter-
nal Report, 1987.

[5] Gross,T., Lam,M., Webb,J.,"WARP As A Machine for Low Level Vision", IEEE Con-
ference on Robotics and Automation, 1985.

[6] KentE., Shneier M., Lumia,R., "PIPE-Pipelined Image Processing Engine", Journal of
Parallel and Distributed Computing, 1984.

[7] Lumia, R, Shneier, M., Kent, E., "A Real-Time Iconic Image Processor”" ,NBSIR, 1984.

[8) Nashman, M., Chaconas, K., "Sensory Processing System, Data Acquisition Level”,
ICG #005, NBS Internal Report, 1987. '

[9] Nashman, M., Chaconas, K., "Sensory Processing System, Low Level Processing
Stage”, ICG #012, NBS Internal Report, 1988.

[10] Rosenfeld, A., Kak, A., "Digital Picture Processing", Volume 1 Second Edition, Aca-
demic Press, 1982.

[11] Wavering, A., "Manipulator Primitive Level Task Decomposition”, ICG #003, NBS
Internal Report, 1987.

[12] Wilf, J M., Cunningham, R.T., "Computing Region Moments from Boundry Representa-
tions”, JPL Publication 79-49, November, 1979.

